

 AMTN Token Audit 1

Analysis
 ⬤ Critical ⬤ Medium ⬤ Minor / Informative ⬤ Pass

Severity Code Description

Status

⬤ ST Stops Transactions

Passed

⬤ OTUT Transfers User's Tokens Passed

⬤ ELFM Exceeds Fees Limit Passed

⬤ MT Mints Tokens Unresolved

⬤ BT Burns Tokens Passed

⬤ BC Blacklists Addresses Passed

Diagnostics

 ⬤ Critical ⬤ Medium ⬤ Minor / Informative

Severity Code Description

Status

⬤ TSD Total Supply Diversion

Unresolved

⬤ ROF Redundant Ownership Functionality Unresolved

⬤ MEM Misleading Error Messages Unresolved

 AMTN Token Audit 2

⬤ MRF Missing Renounce Functionality Unresolved

⬤ L04 Conformance to Solidity Naming Conventions Unresolved

Table of Contents
Analysis 1

Diagnostics 1

Table of Contents 2

Risk Classification 3

Review 4

Audit Updates 5

Source Files 6

Findings Breakdown 7

MT - Mints Tokens 7

Description 8

Recommendation 8

TSD - Total Supply Diversion 9

Description 9

Recommendation 10

ROF - Redundant Ownership Functionality 10

Description 11

Recommendation 11

MEM - Misleading Error Messages 11

Description 11

Recommendation 12

 AMTN Token Audit 3

MRF - Missing Renounce Functionality 12

Description 12

Recommendation 13

L04 - Conformance to Solidity Naming Conventions 13

Description 13

Recommendation 14

Functions Analysis 14

Inheritance Graph 15

Flow Graph 16

Summary 17

Disclaimer 18

About ChainProof 21

Risk Classification
The criticality of findings in ChainProof’s smart contract audits is determined by evaluating

multiple variables. The two primary variables are:

1. Likelihood of Exploitation: This considers how easily an attack can be executed,

including the economic feasibility for an attacker.

2. Impact of Exploitation: This assesses the potential consequences of an attack,

particularly in terms of the loss of funds or disruption to the contract's functionality.

Based on these variables, findings are categorized into the following severity levels:

1. Critical: Indicates a vulnerability that is both highly likely to be exploited and can

result in significant fund loss or severe disruption. Immediate action is required to

address these issues.

2. Medium: Refers to vulnerabilities that are either less likely to be exploited or would

have a moderate impact if exploited. These issues should be addressed in due

course to ensure overall contract security.

 AMTN Token Audit 4

3. Minor: Involves vulnerabilities that are unlikely to be exploited and would have a

minor impact. These findings should still be considered for resolution to maintain

best practices in security.

4. Informative: Points out potential improvements or informational notes that do not

pose an immediate risk. Addressing these can enhance the overall quality and

robustness of the contract.

Severity

Likelihood / Impact of Exploitation

⬤ Critical

Highly Likely / High Impact

 ⬤ Medium Less Likely / High Impact or Highly Likely/ Lower Impact

 ⬤ Minor / Informative Unlikely / Low to no Impact

Review

Contract Name AAMTOKEN

Compiler Version v0.8.28+commit.7893614a

Optimization 200 runs

Explorer
https://bscscan.com/address/0xed7e3c10fba2fd235eac584c08

68b0b45e40e4a2

Address 0xed7e3c10fba2fd235eac584c0868b0b45e40e4a2

https://bscscan.com/address/0xed7e3c10fba2fd235eac584c0868b0b45e40e4a2
https://bscscan.com/address/0xed7e3c10fba2fd235eac584c0868b0b45e40e4a2

 AMTN Token Audit 5

Network BSC

Symbol AMTN

Decimals 18

Total Supply 3.000.000.000

Audit Updates

Initial Audit

14 Apr 2025

https://github.com/ChainProof-io/audits/blob/main/amtn/v1/au

dit.pdf

Corrected Phase 2

28 Apr 2025

https://github.com/ChainProof-io/audits/blob/main/amtn/v2/au

dit.pdf

Corrected Phase 3 05 May 2025

https://github.com/cyberscope-io/audits/blob/main/amtn/v1/audit.pdf
https://github.com/cyberscope-io/audits/blob/main/amtn/v1/audit.pdf
https://github.com/cyberscope-io/audits/blob/main/amtn/v1/audit.pdf
https://github.com/cyberscope-io/audits/blob/main/amtn/v2/audit.pdf
https://github.com/cyberscope-io/audits/blob/main/amtn/v2/audit.pdf
https://github.com/cyberscope-io/audits/blob/main/amtn/v2/audit.pdf

 AMTN Token Audit 6

Source Files

Filename SHA256

contracts/AAMToken.sol
f2b48466c3482cdb16055fa513164ddce937477aaaa754b12ea4307e85

d45014

 AMTN Token Audit 7

Findings Breakdown

 ⬤ Critical 2

 ⬤ Medium 0

 ⬤ Minor / Informative 4

Severity Unresolved Acknowledged Resolved Other

⬤ Critical 2 0 0 0

⬤ Medium 0 0 0 0

⬤ Minor / Informative 4 0 0 0

MT - Mints Tokens

Criticality Critical

Location

contracts/AAMToken.sol#L156

 AMTN Token Audit 8

Status Unresolved

Description

Users are able to mint amounts of tokens that are not tracked by the total supply. As a result,

the contract tokens will be highly inflated.

In the batchTransfer users are able to add a list of amounts they want to transfer

and recipients to receive them. The amounts are added to the balances of the recipients and

are summed to calculate the totalAmount that will be subtracted by the balance of the

sender. Since the entire process happens inside an unchecked , if the totalAmount

surpasses the max unsigned integer, it will be wrapped to a lower value. This will result in

the recipients receiving any amount of tokens as long as the wrapped totalAmount is

not greater than the balance of the sender essentially minting an unlimited amount of

tokens. This is also described in the TSD finding.

unchecked { for (uint256 i = 0; i < len; ++i) {

address recipient = recipients[i]; uint256

amount = amounts[i]; require(recipient !=

address(0), "Zero address recipient");

require(recipient != sender, "Cannot transfer to

self"); totalAmount += amount;

_balances[recipient] += amount; emit

Transfer(sender, recipient, amount);

 }

 require(totalAmount <= senderBalance,

"Insufficient balance");

 _balances[sender] = senderBalance - totalAmount;

}

Recommendation

The team should modify the batchTransfer function to avoid the minting of tokens and

discrepancy between the sum of all balances and the total supply.

 AMTN Token Audit 9

TSD - Total Supply Diversion

Criticality Critical

Location contracts/AAMToken.sol#L145,156,164,170

Status Unresolved

Description

The total supply of a token is the total number of tokens that have been created, while the

balances of individual accounts represent the number of tokens that an account owns. The

total supply and the balances of individual accounts are two separate concepts that are

managed by different variables in a smart contract. These two entities should be equal to

each other.

In the contract, the amount that is added to the total supply does not equal the amount that

is added to the balances. As a result, the sum of balances is diverse from the total supply.

Specifically, in the batchTransfer method, users are able to add as parameter an array

of amounts they want to transfer. If the totalAmount which is the combined value of the

amounts array exceeds the max unsigned integer value, it will be wrapped to a lower

value. This will result in users bypassing the requirement of totalAmount <=

senderBalance as long as the final wrapped value is less than or equal to the

senderBalance . This will allow users to increase account balances with amounts of

tokens that are not reflected in the totalSupply . Since this function can be called by

anyone, an unlimited amount of tokens can be generated resulting in possible price

manipulation and loss of value.

 AMTN Token Audit 10

unchecked { for (uint256 i = 0; i <

len; ++i) { address recipient =

recipients[i]; uint256 amount =

amounts[i];

 require(recipient != address(0), "Zero

address recipient"); require(recipient !=

sender, "Cannot transfer to self");

totalAmount += amount;

 _balances[recipient] += amount;

emit Transfer(sender, recipient, amount);

 } require(totalAmount <= senderBalance,

"Insufficient balance");

 _balances[sender] = senderBalance - totalAmount;

}

Recommendation

The total supply and the balance variables are separate and independent from each other.

The total supply represents the total number of tokens that have been created, while the

balance mapping stores the number of tokens that each account owns. The sum of balances

should always equal the total supply.

ROF - Redundant Ownership Functionality

Criticality Minor / Informative

Location

contracts/AAMToken.sol#L35,43,218

Status Unresolved

 AMTN Token Audit 11

Description

The contract implements functionality to define an owner. This functionality is normally

implemented in contracts that need some form of authority and access control. However,

excluding the transferOwnership there is no function in the contract that needs to be

called only by the owner. Therefore the ownable functionality is redundant.

address public owner; modifier onlyOwner() {

require(msg.sender == owner, "Only owner");

 _; } function transferOwnership(address newOwner)

external onlyOwner

{ require(newOwner != address(0), "ERC20: transfer

ownership to the zero address");

 address oldOwner =

owner; owner = newOwner;

 emit OwnershipTransferred(oldOwner,

newOwner);

}

Recommendation

It is recommended to remove the ownable functionality to increase code optimization and

readability.

MEM - Misleading Error Messages

Criticality Minor / Informative

Location contracts/AAMToken.sol#L219

Status Unresolved

Description

The contract is using misleading error messages. These error messages do not accurately reflect

the actual implementation, making it difficult to understand the source code.

 AMTN Token Audit 12

Specifically, in transferOwnership the requirement has an error message that mentions

ERC20:... . transferOwnership is not a standard ERC20 function. Defining error

messages with ERC20 at the start of the message is considered a best practice for token

contracts in order to notify external parties that the error comes from an ERC20 function.

require(newOwner != address(0), "ERC20: transfer ownership to

the zero address");

Recommendation

The team is advised to carefully review the error messages in order to reflect the actual

implementation.

MRF - Missing Renounce Functionality

Criticality Minor / Informative

Location contracts/AAMToken.sol

Status Unresolved

Description

When initialized the contract sets the msg.sender as the contracts owner . However

the contract does not implement any functionality to renounce the ownership of the contract.

address public owner;

 modifier onlyOwner() { require(msg.sender ==

owner, "Only owner");

 _;

}

 AMTN Token Audit 13

Recommendation

While it is technically possible to transfer ownership to a contract wallet address that has zero

functionality, simulating renouncing the ownership, it is recommended to add the necessary

functionality for transferring it to address zero.

L04 - Conformance to Solidity Naming Conventions

Criticality Minor / Informative

Location contracts/AAMToken.sol#L31,32,33

Status Unresolved

Description

The Solidity style guide is a set of guidelines for writing clean and consistent Solidity code.

Adhering to a style guide can help improve the readability and maintainability of the Solidity code,

making it easier for others to understand and work with.

The followings are a few key points from the Solidity style guide:

1. Use camelCase for function and variable names, with the first letter in lowercase (e.g.,

myVariable, updateCounter).

2. Use PascalCase for contract, struct, and enum names, with the first letter in uppercase

(e.g., MyContract, UserStruct, ErrorEnum).

3. Use uppercase for constant variables and enums (e.g., MAX_VALUE, ERROR_CODE).

4. Use indentation to improve readability and structure.

5. Use spaces between operators and after commas.

6. Use comments to explain the purpose and behavior of the code.

7. Keep lines short (around 120 characters) to improve readability.

string private constant _name = "AAMTOKEN"

string private constant _symbol = "AMTN"

uint8 private constant _decimals = 18

 AMTN Token Audit 14

Recommendation

By following the Solidity naming convention guidelines, the codebase increased the

readability, maintainability, and makes it easier to work with. Find more information

on the Solidity documentation https://docs.soliditylang.org/en/stable/style-

guide.html#naming-conventions.

Functions Analysis

Contract Type Bases

 Function Name Visibility Mutability Modifiers

AAMTOKEN Implementation IBEP20

 Public
✓

-

 totalSupply External -

 balanceOf External -

 transfer External
✓

-

 allowance External -

 approve Public
✓

-

 _approve Internal ✓

 increaseAllowance Public
✓

-

 decreaseAllowance Public
✓

-

 transferFrom External
✓

-

 batchTransfer External ✓ -

 _transfer Internal
✓

 _mint Internal
✓

https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions
https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions
https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions

 AMTN Token Audit 15

 _burn Internal
✓

 burn External ✓ -

 transferOwnership External
✓

onlyOwner

 name External -

 symbol External -

 decimals External -

Inheritance Graph

 AMTN Token Audit 16

Flow Graph

 AMTN Token Audit 17

Summary
AAMToken contract implements a token mechanism. This audit investigates security issues,

business logic concerns and potential improvements.

 AMTN Token Audit 18

Disclaimer
The information provided in this report does not constitute investment, financial or trading

advice and you should not treat any of the document's content as such. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes nor may

copies be delivered to any other person other than the Company without ChainProof’s prior

written consent. This report is not nor should be considered an “endorsement” or

“disapproval” of any particular project or team. This report is not nor should be regarded as

an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts ChainProof to perform a security assessment. This document does not

provide any warranty or guarantee regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the technologies proprietors' business,

business model or legal compliance. This report should not be used in any way to make

decisions around investment or involvement with any particular project. This report

represents an extensive assessment process intending to help our customers increase the

quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk

ChainProof’s position is that each company and individual are responsible for their own due

diligence and continuous security ChainProof’s goal is to help reduce the attack vectors and

the high level of variance associated with utilizing new and consistently changing

technologies and in no way claims any guarantee of security or functionality of the

technology we agree to analyze. The assessment services provided by ChainProof are

subject to dependencies and are under continuing development. You agree that your access

and/or use including but not limited to any services reports and materials will be at your sole

risk on an as-is where-is and as-available basis Cryptographic tokens are emergent

technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives false negatives and other unpredictable

results. The services may access and depend upon multiple layers of third parties.

About ChainProof

Chainproof is an Audit & KYC firm for Blockchain Projects, aimed at securing the Blockchain and the

assets at risk. Chainproof is fueled by Industry grade experienced Blockchain Developers from all

around the globe. From finding vulnerabilities, potential scams, malicious code mitigation, improper

implementation of the token which can lead to loss of user’s fund, you name it and we cover and

secure them all.

Security testing and risk mitigation is given the highest priority at ChainProof. The audit process is

analyzing and monitoring many aspects of the project. That way, it gives the community a good sense

of security using an informative report and a generic score.

ChainProof is aiming to make crypto discoverable and efficient globally. We associate with extremely

robust testing and code review, leaving no room for any security risks because, when it comes to user’s

funds, we need to leave no stone unturned. Cheers!

The ChainProof team

ChainProof.dev

https://www.cyberscope.io/

