

 Apollo Caps ETF Token Audit 1

Analysis

⬤ Critical ⬤ Medium ⬤ Minor / Informative ⬤ Pass

Severity Code Description

Status

⬤ ST Stops Transactions

Unresolved

⬤ OTUT Transfers User's Tokens Passed

⬤ ELFM Exceeds Fees Limit Passed

⬤ MT Mints Tokens Passed

⬤ BT Burns Tokens Passed

⬤

BC Blacklists Addresses Unresolved

Diagnostics

⬤ Critical ⬤ Medium ⬤ Minor / Informative

Severity Code Description

Status

⬤ MEE Missing Events Emission

Unresolved

⬤ PTRP Potential Transfer Revert Propagation Unresolved

⬤ RSW Redundant Storage Writes Unresolved

⬤ L02 State Variables could be Declared Constant Unresolved

⬤ L04 Conformance to Solidity Naming Conventions Unresolved

 Apollo Caps ETF Token Audit 2

⬤ L07 Missing Events Arithmetic Unresolved

⬤ L16 Validate Variable Setters Unresolved

⬤ L19 Stable Compiler Version Unresolved

⬤

L20 Succeeded Transfer Check Unresolved

Table of Contents
Analysis 1

Diagnostics 1

Table of Contents 2

Review 4

Audit Updates 4

Source Files 4

Findings Breakdown 5

ST - Stops Transactions 5

Description 5

Recommendation 6

BC - Blacklists Addresses 6

Description 6

Recommendation 7

MEE - Missing Events Emission 7

Description 7

Recommendation 9

PTRP - Potential Transfer Revert Propagation 10

Description 10

Recommendation 10

RSW - Redundant Storage Writes 10

Description 10

Recommendation 11

 Apollo Caps ETF Token Audit 3

L02 - State Variables could be Declared Constant 11

Description 12

Recommendation 12

L04 - Conformance to Solidity Naming Conventions 13

Description 13

Recommendation 14

L07 - Missing Events Arithmetic 15

Description 15

Recommendation 15

L16 - Validate Variable Setters 16

Description 16

Recommendation 16

L19 - Stable Compiler Version 16

Description 17

Recommendation 17

L20 - Succeeded Transfer Check 18

Description 18

Recommendation 18

Functions Analysis 19

Inheritance Graph 23

Flow Graph 24

Summary 25

Disclaimer 26

About Chainproof 27

 Apollo Caps ETF Token Audit 4

Review

Contract Name ACE

Compiler Version v0.8.25+commit.b61c2a91

Optimization 200 runs

Explorer
https://bscscan.com/address/0xcb7bf0218ccbf340c6676706c6

0a41c1e9cbdd44

Address 0xcb7bf0218ccbf340c6676706c60a41c1e9cbdd44

Network BSC

Symbol ACE

Decimals 18

Total Supply 100,000,000

Badge Eligibility Must Fix Criticals

Filename SHA256

ACE.sol 7344f0939364d55c29e51fdd51f62d97c2ccf35f1f0decfd20dce217933b

6d87

https://bscscan.com/address/0xcb7bf0218ccbf340c6676706c60a41c1e9cbdd44
https://bscscan.com/address/0xcb7bf0218ccbf340c6676706c60a41c1e9cbdd44

 Apollo Caps ETF Token Audit 5

Audit Updates

Initial Audit 25 Mar 2024

Source Files

 Apollo Caps ETF Token Audit 6

Findings Breakdown

 ⬤ Critical 2

 ⬤ Medium 0

 ⬤ Minor / Informative 9

Severity Unresolved Acknowledged Resolved Other

⬤ Critical 2 0 0 0

⬤ Medium 0 0 0 0

⬤ Minor / Informative 9 0 0 0

ST - Stops Transactions

Criticality Critical

Location contracts/ACE.sol#L36

Status Unresolved

Description

The contract owner has the authority to pause or unpause the transactions for all users

including the owner.

 Apollo Caps ETF Token Audit 7

function pause() public onlyOwner {

_pause();
} function unpause() public

onlyOwner {

_unpause();
}

Recommendation

The team should carefully manage the private keys of the owner’s account. We strongly

recommend a powerful security mechanism that will prevent a single user from accessing

the contract admin functions.

Temporary Solutions:

These measurements do not decrease the severity of the finding

● Introduce a time-locker mechanism with a reasonable delay.

● Introduce a multi-signature wallet so that many addresses will confirm the action.

● Introduce a governance model where users will vote about the actions.

Permanent Solution:

● Renouncing the ownership, which will eliminate the threats but it is non-reversible.

BC - Blacklists Addresses

Criticality Critical

Location contracts/ACE.sol#L133

Status Unresolved

Description

The contract owner has the authority to stop addresses from transactions. The owner may

take advantage of it by calling thefunction.
addBlackList

 Apollo Caps ETF Token Audit 8

function addBlackList(address account) public onlyOwner {

_blacklist[account] = true;

emit Blacklist(account,

true);
}

Recommendation

The team should carefully manage the private keys of the owner’s account. We strongly

recommend a powerful security mechanism that will prevent a single user from accessing

the contract admin functions.

Temporary Solutions:

These measurements do not decrease the severity of the finding

● Introduce a time-locker mechanism with a reasonable delay.

● Introduce a multi-signature wallet so that many addresses will confirm the action.

● Introduce a governance model where users will vote about the actions.

Permanent Solution:

● Renouncing the ownership, which will eliminate the threats but it is non-reversible.

MEE - Missing Events Emission

Criticality Minor / Informative

Location contracts/ACE.sol#L45,143

Status Unresolved

Description

The contract performs actions and state mutations from external methods that do not result

in the emission of events. Emitting events for significant actions is important as it allows

external parties, such as wallets or dApps, to track and monitor the activity on the contract.

Without these events, it may be difficult for external parties to accurately determine the

current state of the contract.

 Apollo Caps ETF Token Audit 9

function setTaxRate(

uint16 _buyTaxRate,

uint16 _sellTaxRate
) public onlyOwner {

require(

_buyTaxRate <=

_maxBuyTaxRate,

"ACE: buy tax

rate must be

less than or

equal to max
buy tax rate"

);

require(

_sellTaxRate <=

_maxSellTaxRate,

"ACE: sell tax

rate must be

less than or

equal to max
sell tax rate"

);

buyTaxRate =

_buyTaxRate;

sellTaxRate =

_sellTaxRate;
}

 Apollo Caps ETF Token Audit 10

Recommendation

It is recommended to include events in the code that are triggered each time a significant

action is taking place within the contract. These events should include relevant details such

as the user's address and the nature of the action taken. By doing so, the contract will be

more transparent and easily auditable by external parties. It will also help prevent potential

issues or disputes that may arise in the future.

 Apollo Caps ETF Token Audit 11

PTRP - Potential Transfer Revert Propagation

Criticality Minor / Informative

Location ACE.sol#L95

Status Unresolved

Description

The contract sends fees to the receiveFeeAddress as part of the transfer flow. If this

address is set to zero then it will revert since the ERC20 library reverts in case of zero

address. As a result, the error will propagate to the token’s contract and revert the transfer.

if (taxAmount > 0) {

_transfer(sender, receiveFeeAddress, taxAmount);
}

Recommendation

The team is advised to either prevent the receiveFeeAddress from being configured with

zero value or not take fees when the address is zero.

RSW - Redundant Storage Writes

Criticality Minor / Informative

Location contracts/ACE.sol#L45,71,75,143

Status Unresolved

Description

The contract modifies the state of the following variables without checking if their current

value is the same as the one given as an argument. As a result, the contract performs

redundant storage writes, when the provided parameter matches the current state of the

variables, leading to unnecessary gas consumption and inefficiencies in contract execution.

 Apollo Caps ETF Token Audit 12

function setTaxRate(

uint16 _buyTaxRate,

uint16 _sellTaxRate
) public onlyOwner {

require(

_buyTaxRate <=

_maxBuyTaxRate,

"ACE: buy tax

rate must be

less than or

equal to max
buy tax rate"

);

require(

_sellTaxRate <=

_maxSellTaxRate,

"ACE: sell tax

rate must be

less than or

equal to max
sell tax rate"

);

buyTaxRate =

_buyTaxRate;

sellTaxRate =

_sellTaxRate;
}

Recommendation

The team is advised to implement additional checks within to prevent redundant storage

writes when the provided argument matches the current state of the variables. By

incorporating statements to compare the new values with the existing values before

proceeding with any state modification, the contract can avoid unnecessary storage

operations, thereby optimizing gas usage.

L02 - State Variables could be Declared Constant

Criticality Minor / Informative

Location ACE.sol#L12,14

Status Unresolved

 Apollo Caps ETF Token Audit 13

Description

State variables can be declared as constant using the constant keyword. This means that

the value of the state variable cannot be changed after it has been set. Additionally, the

constant variables decrease gas consumption of the corresponding transaction.

uint16 private _maxBuyTaxRate = 1000

uint16 private _maxSellTaxRate = 1000

Recommendation

Constant state variables can be useful when the contract wants to ensure that the value of a

state variable cannot be changed by any function in the contract. This can be useful for

storing values that are important to the contract's behavior, such as the contract's address or

the maximum number of times a certain function can be called. The team is advised to add

the constant keyword to state variables that never change.

 Apollo Caps ETF Token Audit 14

-

L04 Conformance to Solidity Naming Conventions

Criticality Minor / Informative

Location ACE.sol#L45,46,145,150

Status Unresolved

Description

The Solidity style guide is a set of guidelines for writing clean and consistent Solidity code.

Adhering to a style guide can help improve the readability and maintainability of the Solidity

code, making it easier for others to understand and work with.

The followings are a few key points from the Solidity style guide:

1. Use camelCase for function and variable names, with the first letter in lowercase

(e.g., myVariable, updateCounter).

2. Use PascalCase for contract, struct, and enum names, with the first letter in

uppercase (e.g., MyContract, UserStruct, ErrorEnum).

3. Use uppercase for constant variables and enums (e.g., MAX_VALUE,

ERROR_CODE).

4. Use indentation to improve readability and structure.

5. Use spaces between operators and after commas.

6. Use comments to explain the purpose and behavior of the code.

7. Keep lines short (around 120 characters) to improve readability.

uint16 _buyTaxRate uint16

_sellTaxRate address

_receiveFeeAddress

 Apollo Caps ETF Token Audit 15

address _to address

_token

Recommendation

By following the Solidity naming convention guidelines, the codebase increased the

readability, maintainability, and makes it easier to work with. Find more information

on the Solidity documentation https://docs.soliditylang.org/en/v0.8.17/style-

guide.html#naming-convention.

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#naming-conventions
https://docs.soliditylang.org/en/v0.8.17/style-guide.html#naming-conventions

 Apollo Caps ETF Token Audit 16

-

L07 Missing Events Arithmetic

Criticality Minor / Informative

Location ACE.sol#L56

Status Unresolved

Description

Events are a way to record and log information about changes or actions that occur within a

contract. They are often used to notify external parties or clients about events that have

occurred within the contract, such as the transfer of tokens or the completion of a task.

It's important to carefully design and implement the events in a contract, and to ensure that

all required events are included. It's also a good idea to test the contract to ensure that all

events are being properly triggered and logged.

buyTaxRate = _buyTaxRate

Recommendation

By including all required events in the contract and thoroughly testing the contract's

functionality, the contract ensures that it performs as intended and does not have any

missing events that could cause issues with its arithmetic.

 Apollo Caps ETF Token Audit 17

-

L16 Validate Variable Setters

Criticality Minor / Informative

Location ACE.sol#L146

Status Unresolved

Description

The contract performs operations on variables that have been configured on user-supplied

input. These variables are missing of proper check for the case where a value is zero. This

can lead to problems when the contract is executed, as certain actions may not be properly

handled when the value is zero.

receiveFeeAddress = _receiveFeeAddress

Recommendation

By adding the proper check, the contract will not allow the variables to be configured with

zero value. This will ensure that the contract can handle all possible input values and avoid

unexpected behavior or errors. Hence, it can help to prevent the contract from being

exploited or operating unexpectedly.

L19 Stable Compiler Version

Criticality Minor / Informative

 Apollo Caps ETF Token Audit 18

-

Location ACE.sol#L3

Status Unresolved

Description

Thesymbol indicates that any version of Solidity that is compatible with the

specified version (i.e., any version that is a higher minor or patch version) can be used to

compile the contract. The version lock is a mechanism that allows the author to specify a

minimum version of the Solidity compiler that must be used to compile the contract code.

This is useful because it ensures that the contract will be compiled using a version of the

compiler that is known to be compatible with the code.

pragma solidity ^0.8.20;

Recommendation

The team is advised to lock the pragma to ensure the stability of the codebase. The locked

pragma version ensures that the contract will not be deployed with an unexpected version.

An unexpected version may produce vulnerabilities and undiscovered bugs. The compiler

should be configured to the lowest version that provides all the required functionality for the

codebase. As a result, the project will be compiled in a well-tested LTS (Long Term Support)

environment.

^

 Apollo Caps ETF Token Audit 19

-

L20 Succeeded Transfer Check

Criticality Minor / Informative

Location ACE.sol#L154

Status Unresolved

Description

According to the ERC20 specification, the transfer methods should be checked if the result

is successful. Otherwise, the contract may wrongly assume that the transfer has been

established.

token.transfer(_to, balance)

Recommendation

The contract should check if the result of the transfer methods is successful. The team is

advised to check the SafeERC20 library from the Openzeppelin library.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol

 Apollo Caps ETF Token Audit 20

Functions Analysis

Contract Type Bases

Function Name Visibility Mutability Modifiers

IERC20Errors Interface

IERC721Errors Interface

IERC1155Error

s
Interface

Context Implementation

_msgSender Internal

_msgData Internal

_contextSuffixLength Internal

IERC20 Interface

totalSupply External

-

balanceOf External

-

transfer External ✓ -

allowance External

-

 Apollo Caps ETF Token Audit 21

approve External ✓ -

transferFrom External ✓ -

IERC20Metadat

a
Interface IERC20

name External

-

symbol External

-

decimals External

-

ERC20 Implementation
Context,
IERC20,

IERC20Meta

data,

IERC20Error

s

Public ✓ -

name Public

-

symbol Public

-

decimals Public

-

totalSupply Public

-

 Apollo Caps ETF Token Audit 22

balanceOf Public

-

transfer Public ✓ -

allowance Public

-

approve Public ✓ -

transferFrom Public ✓ -

_transfer Internal ✓

_update Internal ✓

_mint Internal ✓

_burn Internal ✓

_approve Internal ✓

_approve Internal ✓

_spendAllowance Internal ✓

Shibase Implementation ERC20

 Public ✓ ERC20

 Apollo Caps ETF Token Audit 23

 Apollo Caps ETF Token Audit 24

Inheritance Graph

 Apollo Caps ETF Token Audit 25

Flow Graph

 Apollo Caps ETF Token Audit 26

Summary
Apollo Caps ETF contract implements a token mechanism. This audit investigates security

issues, business logic concerns and potential improvements. There are some functions that

can be abused by the owner like stop transactions and massively blacklist addresses. A

multi-wallet signing pattern will provide security against potential hacks. Temporarily locking

the contract or renouncing ownership will eliminate all the contract threats.

Disclaimer
The information provided in this report does not constitute investment, financial or trading

advice and you should not treat any of the document's content as such. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes nor may

copies be delivered to any other person other than the Company without Chainproof’s prior

written consent. This report is not nor should be considered an “endorsement” or

“disapproval” of any particular project or team. This report is not nor should be regarded as

an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts Chainproof to perform a security assessment. This document does not

provide any warranty or guarantee regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the technologies proprietors' business,

business model or legal compliance. This report should not be used in any way to make

decisions around investment or involvement with any particular project. This report

represents an extensive assessment process intending to help our customers increase the

quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk

Chainproof’s position is that each company and individual are responsible for their own due

diligence and continuous security Chainproof’s goal is to help reduce the attack vectors and

the high level of variance associated with utilizing new and consistently changing

technologies and in no way claims any guarantee of security or functionality of the

technology we agree to analyze. The assessment services provided by Chainproof are

subject to dependencies and are under continuing development. You agree that your access

and/or use including but not limited to any services reports and materials will be at your sole

risk on an as-is where-is and as-available basis Cryptographic tokens are emergent

technologies and carry with them high levels of technical risk and uncertainty. The

 Apollo Caps ETF Token Audit 28

assessment reports could include false positives false negatives and other unpredictable

results. The services may access and depend upon multiple layers of third parties.

About ChainProof

Chainproof is an Audit & KYC firm for Blockchain Projects, aimed at securing the Blockchain and the

assets at risk. Chainproof is fueled by Industry grade experienced Blockchain Developers from all

around the globe. From finding vulnerabilities, potential scams, malicious code mitigation, improper

implementation of the token which can lead to loss of user’s fund, you name it and we cover and

secure them all.

Security testing and risk mitigation is given the highest priority at ChainProof. The audit process is

analyzing and monitoring many aspects of the project. That way, it gives the community a good sense

of security using an informative report and a generic score.

ChainProof is aiming to make crypto discoverable and efficient globally. We associate with extremely

robust testing and code review, leaving no room for any security risks because, when it comes to user’s

funds, we need to leave no stone unturned. Cheers!

The ChainProof team

ChainProof.dev

https://www.cyberscope.io/

