

 Autonomi NFT Audit 1

Table of Contents
Table of Contents 1

Risk Classification 3

Review 4

Audit Updates 4

Source Files 4

Overview 4

Claims Contract 4

Claiming Mechanism 5

Security Measures 5

AutonomiNFT Contract 5

Minting Mechanism 5

Modification Mechanism 6

Token Metadata and URI 6

Roles 6

Claims Contract 6

Users 6

Retrieval Functions 6

AutonomiNFT Contract 7

Owner 7

Retrieval Functions 7

Findings Breakdown 7

Diagnostics 8

CCR - Contract Centralization Risk 8

Description 8

Recommendation 9

MT - Mints Tokens 10

Description 10

Recommendation 10

Team Update 11

 Autonomi NFT Audit 2

UTPD - Unverified Third Party Dependencies 12

Description 12

Recommendation 12

Team Update 12

L04 - Conformance to Solidity Naming Conventions 12

Description 13

Recommendation 13

Functions Analysis 13

Inheritance Graph 15

Flow Graph 16

Summary 17

Disclaimer 18

About Chainproof 21

 Autonomi NFT Audit 3

Risk Classification
The criticality of findings in Chainproof’s smart contract audits is determined by evaluating

multiple variables. The two primary variables are:

1. Likelihood of Exploitation: This considers how easily an attack can be executed,

including the economic feasibility for an attacker.

2. Impact of Exploitation: This assesses the potential consequences of an attack,

particularly in terms of the loss of funds or disruption to the contract's functionality.

Based on these variables, findings are categorized into the following severity levels:

1. Critical: Indicates a vulnerability that is both highly likely to be exploited and can

result in significant fund loss or severe disruption. Immediate action is required to

address these issues.

2. Medium: Refers to vulnerabilities that are either less likely to be exploited or would

have a moderate impact if exploited. These issues should be addressed in due

course to ensure overall contract security.

3. Minor: Involves vulnerabilities that are unlikely to be exploited and would have a

minor impact. These findings should still be considered for resolution to maintain

best practices in security.

4. Informative: Points out potential improvements or informational notes that do not

pose an immediate risk. Addressing these can enhance the overall quality and

robustness of the contract.

Severity

Likelihood / Impact of Exploitation

⬤ Critical

Highly Likely / High Impact

 ⬤ Medium Less Likely / High Impact or Highly Likely/ Lower Impact

 ⬤ Minor / Informative Unlikely / Low to no Impact

 Autonomi NFT Audit 4

Review

Repository https://github.com/lajosdeme/autonomi-claims

Commit b69a9ccc6a485eabec696eadd7e4c884066a04b5

Audit Updates

Initial Audit

28 Feb 2025

https://github.com/Chainproof-io/audits/blob/main/5-ant/v1/au

dit.pdf

Corrected Phase 2 13 Mar 2025

Source Files

Filename SHA256

Claims.sol
982ce3ee619a54df6130201fa7eb29735af0b1886d102d174eb0a286f90

93feb

AutonomiNFT.sol
5ac037cd61f5ba58da59802ebade3d26c38b8e4866c940e1f8506d7cf33

90f46

Overview

Claims Contract

The Claims contract facilitates the controlled release and claiming of ANT tokens for

holders of Autonomi NFTs through a structured vesting mechanism. The contract defines two

key vesting periods, starting from a specific timestamp (

VESTING_START_TIMESTAMP). The first period releases 50% of the allocated tokens after

90 days, while the second period releases the rest after 180 days. This ensures a gradual

distribution of tokens over time.

https://github.com/cyberscope-io/audits/blob/main/5-ant/v1/audit.pdf
https://github.com/cyberscope-io/audits/blob/main/5-ant/v1/audit.pdf
https://github.com/cyberscope-io/audits/blob/main/5-ant/v1/audit.pdf

 Autonomi NFT Audit 5

Claiming Mechanism

The claim function allows Autonomi NFT holders to claim their allocated ANT tokens.

Holders can claim up to the unlocked amount according to the vesting schedule, but they

cannot claim more than their total allocation. The function checks the current claimable

amount based on the vesting schedule, and if the requested amount exceeds the available

tokens, the transaction is reverted. Additionally, the claim function increments the total

amount claimed for each token, preventing over-claiming and ensuring the security of the

process. The getClaimable function provides a view of the claimable amount for a

specific token ID, allowing users to check how much they are entitled to claim based on the

vesting schedule. This function helps ensure transparency and allows users to plan their

claims accordingly, based on the time that has passed since the vesting started.

Security Measures

The contract employs the nonReentrant modifier in the claim function to prevent reentrancy

attacks. This security feature ensures that external calls cannot re-enter the contract and

interfere with the ongoing transaction, safeguarding the integrity of the claiming process. It

also uses the SafeERC20 library from OpenZeppelin to ensure that ANT token transfers are

safe and that no unintended errors or vulnerabilities occur during the token transfer process.

AutonomiNFT Contract

The AutonomiNFT contract is responsible for minting and managing the Autonomi NFTs,

which grant holders the ability to claim ANT tokens. The contract allows for minting new NFTs

with specified ANT token allocations using the mint function. This function takes an address

and an allocation for the token ID and mints a new NFT for the specified address, assigning

the ANT allocation to the NFT. The contract ensures that each NFT has a unique allocation,

granting holders the right to claim a corresponding amount of ANT tokens.

Minting Mechanism

The mint and mintMultiple functions allow for the minting of NFTs, where each

NFT is assigned a specific ANT token allocation. The mintMultiple function accepts

arrays of addresses and allocations and ensures that both arrays are of the same length. It

 Autonomi NFT Audit 6

iterates through the arrays, minting the NFTs and assigning the corresponding token

allocations, allowing for efficient batch processing of multiple NFTs.

Modification Mechanism

The setAntAllocationForTokenId function enables the contract owner to modify the

ANT token allocation for a specific token ID. This function is useful when adjustments need to

be made to the token allocation after an NFT has already been minted. It ensures that the

allocation is updated securely, and the contract guarantees that only the owner can modify

the allocations. The setAntAllocationsForTokenIds function allows the contract

owner to update the ANT token allocations for multiple token IDs at once.

Token Metadata and URI

The tokenURI function generates a unique URI for each token ID, which points to the

metadata of the NFT. This function calls the internal _baseURI function to get the base

URI for the token and appends the token ID to it to form a complete URI for the token’s

metadata. This ensures that each NFT has a unique metadata URI that can be accessed by

users. The setTokenURI function allows the contract owner to update the base URI used

for generating token URIs. This flexibility ensures that the metadata for the NFTs can be

updated as needed, allowing the owner to modify the metadata structure or content at any

time.

Roles

Claims Contract

Users

Users (holders of Autonomi NFTs) can interact with the following functions:

● function claim(uint256 tokenId, uint256 amount)

Retrieval Functions

The following functions can be used to retrieve information:

● function getClaimable(uint256 tokenId)

 Autonomi NFT Audit 7

AutonomiNFT Contract

Owner

The owner of the contract can interact with the following functions:

● function mint(address to, AntAllocation calldata allocation)

● function mintMultiple(address[] calldata to, AntAllocation[]

calldata allocations)

● function setAntAllocationForTokenId(AntAllocation calldata

allocation)

● function setAntAllocationsForTokenIds(AntAllocation[] calldata

allocations)

● function setTokenURI(string calldata newTokenURI)

Retrieval Functions

The following functions can be used to retrieve information:

● function tokenURI(uint256 tokenId)

● function tokenIdToAntAllocation(uint256 tokenId)

Findings Breakdown

 ⬤ Critical 0

 ⬤ Medium 0

 ⬤ Minor / Informative 4

Severity Unresolved Acknowledged Resolved Other

⬤ Critical 0 0 0 0

⬤ Medium 0 0 0 0

⬤ Minor / Informative 0 4 0 0

 Autonomi NFT Audit 8

Diagnostics

 ⬤ Critical ⬤ Medium ⬤ Minor / Informative

Severity Code Description

Status

⬤ CCR Contract Centralization Risk

Acknowledged

⬤ MT Mints Tokens Acknowledged

⬤ UTPD Unverified Third Party Dependencies Acknowledged

⬤ L04 Conformance to Solidity Naming Conventions Acknowledged

CCR - Contract Centralization Risk

Criticality Minor / Informative

Location AutonomiNFT.sol#L43,52,65,73,95

Claims.sol#L64

Status Acknowledged

Description

The contract's functionality and behavior are heavily dependent on external parameters or

configurations. While external configuration can offer flexibility, it also poses several

centralization risks that warrant attention. Centralization risks arising from the dependence on

external configuration include Single Point of Control, Vulnerability to Attacks, Operational

Delays, Trust Dependencies, and Decentralization Erosion.

function mint(address to, AntAllocation calldata allocation)

external onlyOwner {} function mintMultiple(address[]

calldata to, AntAllocation[] calldata allocations) external

onlyOwner {} function

setAntAllocationForTokenId(AntAllocation calldata

allocation) external onlyOwner {} function

 Autonomi NFT Audit 9

setAntAllocationsForTokenIds(AntAllocation[] calldata

allocations) external onlyOwner {} function

setTokenURI(string calldata newTokenURI) external onlyOwner

{}

Additionally, the Claims contract logic works under the assumption that tokens will be

held in the contract. However this essentially means that an external party will be responsible

for providing the tokens to the contract.

ANT_TOKEN.safeTransfer(msg.sender, claimableAmount);

Recommendation

To address this finding and mitigate centralization risks, it is recommended to evaluate the

feasibility of migrating critical configurations and functionality into the contract's codebase

itself. This approach would reduce external dependencies and enhance the contract's self-

sufficiency. It is essential to carefully weigh the trade-offs between external configuration

flexibility and the risks associated with centralization.

 Autonomi NFT Audit 10

MT - Mints Tokens

Criticality Minor / Informative

Location AutonomiNFT.sol#L27,32

Status Acknowledged

Description

The contract owner has the authority to mint tokens. The owner may take advantage of it by

calling the mint or mintMultiple functions.

function mint(address to, AntAllocation calldata

allocation) external onlyOwner {

 _safeMint(to, allocation.tokenId);

 _setAntAllocationForTokenId(allocation.tokenId,

allocation.antAllocation);

} function mintMultiple(address[] calldata to,

AntAllocation[] calldata allocations) external onlyOwner {

 require(to.length == allocations.length, "Invalid

array length"); for (uint256 i = 0; i <

allocations.length; i++) {

 _safeMint(to[i], allocations[i].tokenId);

_setAntAllocationForTokenId(allocations[i].tokenId,

allocations[i].antAllocation);

 }

}

Recommendation

The team should carefully manage the private keys of the owner’s account. We strongly

recommend a powerful security mechanism that will prevent a single user from accessing the

contract admin functions.

Solutions:

● Introduce a time-locker mechanism with a reasonable delay.

● Introduce a multi-signature wallet so that many addresses will confirm the action.

● Introduce a governance model where users will vote about the actions.

 Autonomi NFT Audit 11

Team Update

The team has acknowledged that this is not a security issue and states: the recommendation

will be implemented upon deployment: the owner of the contract will be a multi-signature

wallet controlled by multiple addresses.

 Autonomi NFT Audit 12

UTPD - Unverified Third Party Dependencies

Criticality Minor / Informative

Location Claims.sol#L62

Status Acknowledged

Description

The contract uses an external contract in order to determine the transaction's flow. The

external contract is untrusted. As a result, it may produce security issues and harm the

transactions.

ANT_TOKEN.safeTransfer(msg.sender, claimableAmount);

Recommendation

The contract should use a trusted external source. A trusted source could be either a

commonly recognized or an audited contract. The pointing addresses should not be able to

change after the initialization.

Team Update

The team has acknowledged that this is not a security issue and states: the ANT token

contract is trusted, live and verified on Arbiscan at the following link:

https://arbiscan.io/token/0xa78d8321b20c4ef90ecd72f2588aa985a4bdb684

L04 - Conformance to Solidity Naming Conventions

Criticality Minor / Informative

Location Claims.sol#L24,25

Status Acknowledged

https://arbiscan.io/token/0xa78d8321b20c4ef90ecd72f2588aa985a4bdb684
https://arbiscan.io/token/0xa78d8321b20c4ef90ecd72f2588aa985a4bdb684
https://arbiscan.io/token/0xa78d8321b20c4ef90ecd72f2588aa985a4bdb684

 Autonomi NFT Audit 13

Description

The Solidity style guide is a set of guidelines for writing clean and consistent Solidity code.

Adhering to a style guide can help improve the readability and maintainability of the Solidity

code, making it easier for others to understand and work with.

The followings are a few key points from the Solidity style guide:

1. Use camelCase for function and variable names, with the first letter in lowercase

(e.g., myVariable, updateCounter).

2. Use PascalCase for contract, struct, and enum names, with the first letter in

uppercase (e.g., MyContract, UserStruct, ErrorEnum).

3. Use uppercase for constant variables and enums (e.g., MAX_VALUE,

ERROR_CODE).

4. Use indentation to improve readability and structure.

5. Use spaces between operators and after commas.

6. Use comments to explain the purpose and behavior of the code.

7. Keep lines short (around 120 characters) to improve readability.

IERC20 public immutable ANT_TOKEN

IAutonomiNFT public immutable AUTONOMI_NFT

Recommendation

By following the Solidity naming convention guidelines, the codebase increased the

readability, maintainability, and makes it easier to work with. Find more information

on the Solidity documentation https://docs.soliditylang.org/en/stable/style-

guide.html#naming-conventions.

Functions Analysis

Contract Type Bases

Function Name Visibility Mutability Modifiers

https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions
https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions
https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions

 Autonomi NFT Audit 14

Claims Implementation
IClaims,
ReentrancyG

uard

Public ✓ -

claim External ✓ nonReentrant

getClaimable External

-

 _claimable Private

AutonomiNFT Implementation
ERC721Enu

merable,

Ownable

 Public ✓ ERC721

Ownable

 mint External
✓

onlyOwner

mintMultiple External ✓ onlyOwner

 setAntAllocationForTokenId External ✓
onlyOwner

onlyBeforeFirst

VestingPeriod

 setAntAllocationsForTokenIds External ✓
onlyOwner

onlyBeforeFirst

VestingPeriod

 Autonomi NFT Audit 15

_baseURI Internal

tokenURI Public

-

 setTokenURI External
✓

onlyOwner

_setAntAllocationForTokenId Internal ✓

Inheritance Graph

 Autonomi NFT Audit 16

Flow Graph

 Autonomi NFT Audit 17

Summary
Autonomi contract implements a nft and vesting mechanism. This audit investigates security

issues, business logic concerns and potential improvements. The Smart Contract analysis

reported no compiler error or critical issues.

 Autonomi NFT Audit 18

Disclaimer
The information provided in this report does not constitute investment, financial or trading

advice and you should not treat any of the document's content as such. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes nor may

copies be delivered to any other person other than the Company without Chainproof’s prior

written consent. This report is not nor should be considered an “endorsement” or

“disapproval” of any particular project or team. This report is not nor should be regarded as

an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts Chainproof to perform a security assessment. This document does not

provide any warranty or guarantee regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the technologies proprietors' business,

business model or legal compliance. This report should not be used in any way to make

decisions around investment or involvement with any particular project. This report

represents an extensive assessment process intending to help our customers increase the

quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk

Chainproof’s position is that each company and individual are responsible for their own due

diligence and continuous security Chainproof’s goal is to help reduce the attack vectors and

the high level of variance associated with utilizing new and consistently changing

technologies and in no way claims any guarantee of security or functionality of the

technology we agree to analyze. The assessment services provided by Chainproof are

subject to dependencies and are under continuing development. You agree that your access

and/or use including but not limited to any services reports and materials will be at your sole

risk on an as-is where-is and as-available basis Cryptographic tokens are emergent

technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives false negatives and other unpredictable

results. The services may access and depend upon multiple layers of third parties.

About ChainProof

Chainproof is an Audit & KYC firm for Blockchain Projects, aimed at securing the Blockchain and the

assets at risk. Chainproof is fueled by Industry grade experienced Blockchain Developers from all

around the globe. From finding vulnerabilities, potential scams, malicious code mitigation, improper

implementation of the token which can lead to loss of user’s fund, you name it and we cover and

secure them all.

Security testing and risk mitigation is given the highest priority at ChainProof. The audit process is

analyzing and monitoring many aspects of the project. That way, it gives the community a good sense

of security using an informative report and a generic score.

ChainProof is aiming to make crypto discoverable and efficient globally. We associate with extremely

robust testing and code review, leaving no room for any security risks because, when it comes to user’s

funds, we need to leave no stone unturned. Cheers!

The ChainProof team

ChainProof.dev

https://www.cyberscope.io/

