

 BABYXRP Token Audit 1

Analysis
⬤ Critical ⬤ Medium ⬤ Minor / Informative ⬤ Pass

Severity Code Description

Status

⬤ ST Stops Transactions

Passed

⬤ OTUT Transfers User's Tokens Passed

⬤ ELFM Exceeds Fees Limit Passed

⬤ MT Mints Tokens Passed

⬤ BT Burns Tokens Passed

⬤ BC Blacklists Addresses Passed

 BABYXRP Token Audit 2

Diagnostics
⬤ Critical ⬤ Medium ⬤ Minor / Informative

Severity Code Description

Status

⬤ RSML Redundant SafeMath Library

Unresolved

⬤ MEM Missing Error Messages Unresolved

⬤ IDI Immutable Declaration Improvement Unresolved

⬤ L04 Conformance to Solidity Naming Conventions Unresolved

⬤ L07 Missing Events Arithmetic Unresolved

⬤ L09 Dead Code Elimination Unresolved

⬤ L15 Local Scope Variable Shadowing Unresolved

⬤ L16 Validate Variable Setters Unresolved

⬤ L17 Usage of Solidity Assembly Unresolved

Table of Contents
Analysis 1

Diagnostics 2

Table of Contents 3

Risk Classification 5

Review 6

 Audit Updates 6

 Source Files 6

Findings Breakdown 7

 RSML - Redundant SafeMath Library 8

 Description 8

 Recommendation 8

 MEM - Missing Error Messages 9

 Description 9

 Recommendation 9

 IDI - Immutable Declaration Improvement 10

 Description 10

 Recommendation 10

 L04 - Conformance to Solidity Naming Conventions 11

 Description 11

 Recommendation 12

 L07 - Missing Events Arithmetic 13

 Description 13

 Recommendation 13

 L09 - Dead Code Elimination 14

 Description 14

 Recommendation 15

 BABYXRP Token Audit 3

L15 - Local Scope Variable Shadowing 16

 Description 16

 Recommendation 16

 L16 - Validate Variable Setters 17

 Description 17

 Recommendation 17

 L17 - Usage of Solidity Assembly 18

 Description 18

 Recommendation 18

Functions Analysis 19

Inheritance Graph 21

Flow Graph 22

Summary 23

 BABYXRP Token Audit 4

Disclaimer 24

About Chainproof 25

Risk Classification
The criticality of findings in Chainproof’s smart contract audits is determined by evaluating

multiple variables. The two primary variables are:

1. Likelihood of Exploitation: This considers how easily an attack can be executed,

including the economic feasibility for an attacker.

2. Impact of Exploitation: This assesses the potential consequences of an attack,

particularly in terms of the loss of funds or disruption to the contract's functionality.

Based on these variables, findings are categorized into the following severity levels:

Severity Likelihood / Impact of Exploitation

⬤ Critical Highly Likely / High Impact

⬤ Medium Less Likely / High Impact or Highly Likely/ Lower Impact

⬤ Minor / Informative Unlikely / Low to no Impact

1. Critical: Indicates a vulnerability that is both highly likely to be exploited and can

result in significant fund loss or severe disruption. Immediate action is required to

address these issues.

2. Medium: Refers to vulnerabilities that are either less likely to be exploited or would

have a moderate impact if exploited. These issues should be addressed in due

course to ensure overall contract security.

3. Minor: Involves vulnerabilities that are unlikely to be exploited and would have a

minor impact. These findings should still be considered for resolution to maintain

best practices in security.

4. Informative: Points out potential improvements or informational notes that do not

pose an immediate risk. Addressing these can enhance the overall quality and

robustness of the contract.

 BABYXRP Token Audit 5

Review

Contract Name BABYTOKEN

Compiler Version v0.8.4+commit.c7e474f2

Optimization 200 runs

Explorer
https://bscscan.com/address/0x9c6d9ebb9b5777e83d7e16ca5

89d9335f18cca35

Address 0x9c6d9ebb9b5777e83d7e16ca589d9335f18cca35

Network BSC

Symbol BABYXRP

Decimals 18

Total Supply 1,000,000,000

Badge Eligibility Yes

Audit Updates

Initial Audit 16 Dec 2024

https://bscscan.com/address/0x9c6d9ebb9b5777e83d7e16ca589d9335f18cca35
https://bscscan.com/address/0x9c6d9ebb9b5777e83d7e16ca589d9335f18cca35

 BABYXRP Token Audit 6

Source Files

Filename SHA256

BABYTOKEN.sol
7cc9a1f0b27a3f70d4c2c376cadad1f2168d797e61d53c90abd884cd4e

36df62

Findings Breakdown

 ⬤ Critical 0

 ⬤ Medium 0

 ⬤ Minor / Informative 9

Severity Unresolved Acknowledged Resolved Other

⬤ Critical 0 0 0 0

⬤ Medium 0 0 0 0

⬤ Minor / Informative 9 0 0 0

RSML - Redundant SafeMath Library

Criticality Minor / Informative

Location
BABYTOKEN.sol

 BABYXRP Token Audit 7

Status Unresolved

Description

SafeMath is a popular Solidity library that provides a set of functions for performing common

arithmetic operations in a way that is resistant to integer overflows and underflows.

Starting with Solidity versions that are greater than or equal to 0.8.0, the arithmetic

operations revert to underflow and overflow. As a result, the native functionality of the

Solidity operations replaces the SafeMath library. Hence, the usage of the SafeMath library

adds complexity, overhead and increases gas consumption unnecessarily in cases where

the explanatory error message is not used.

library SafeMath {...}

Recommendation

The team is advised to remove the SafeMath library in cases where the revert error

message is not used. Since the version of the contract is greater than 0.8.0 then the pure

Solidity arithmetic operations produce the same result.

If the previous functionality is required, then the contract could exploit the unchecked { ...

} statement.

Read more about the breaking change on

https://docs.soliditylang.org/en/stable/080-breaking-changes.html#solidity-v0-8-0-breaking -

changes.

MEM - Missing Error Messages

Criticality Minor / Informative

Location
BABYTOKEN.sol#L2467,2576,2678

https://docs.soliditylang.org/en/stable/080-breaking-changes.html#solidity-v0-8-0-breaking-changes
https://docs.soliditylang.org/en/stable/080-breaking-changes.html#solidity-v0-8-0-breaking-changes
https://docs.soliditylang.org/en/stable/080-breaking-changes.html#solidity-v0-8-0-breaking-changes

 BABYXRP Token Audit 8

Status Unresolved

Description

The contract is missing error messages. Specifically, there are no error messages to

accurately reflect the problem, making it difficult to identify and fix the issue. As a result, the

users will not be able to find the root cause of the error.

require(totalSupply() > 0) require(false)

require(!excludedFromDividends[account])

Recommendation

The team is suggested to provide a descriptive message to the errors. This message can be

used to provide additional context about the error that occurred or to explain why the

contract execution was halted. This can be useful for debugging and for providing more

information to users that interact with the contract.

IDI - Immutable Declaration Improvement

Criticality Minor / Informative

Location
BABYTOKEN.sol#L3009,3043

Status Unresolved

Description

The contract declares state variables that their value is initialized once in the constructor and

are not modified afterwards. The immutable is a special declaration for this kind of state

variables that saves gas when it is defined.

rewardToken

uniswapV2Pair

 BABYXRP Token Audit 9

Recommendation

By declaring a variable as immutable, the Solidity compiler is able to make certain

optimizations. This can reduce the amount of storage and computation required by the

contract, and make it more gas-efficient.

L04 - Conformance to Solidity Naming Conventions

Criticality Minor / Informative

Location
BABYTOKEN.sol#L1280,1664,1668,1677,1735,1740,2042,2074,2079,212

3,2146,2147,2164,2436,2456,2457,2458,2459,2519,2526,2538,2552,272

3,2960

Status Unresolved

Description

The Solidity style guide is a set of guidelines for writing clean and consistent Solidity code.

Adhering to a style guide can help improve the readability and maintainability of the Solidity

code, making it easier for others to understand and work with.

The followings are a few key points from the Solidity style guide:

1. Use camelCase for function and variable names, with the first letter in lowercase

(e.g., myVariable, updateCounter).

2. Use PascalCase for contract, struct, and enum names, with the first letter in

uppercase (e.g., MyContract, UserStruct, ErrorEnum).

3. Use uppercase for constant variables and enums (e.g., MAX_VALUE,

ERROR_CODE).

4. Use indentation to improve readability and structure.

5. Use spaces between operators and after commas.

6. Use comments to explain the purpose and behavior of the code.

7. Keep lines short (around 120 characters) to improve readability.

 BABYXRP Token Audit 10

function WETH() external pure returns (address);

function __Context_init() internal initializer {

__Context_init_unchained();

}
function __Context_init_unchained() internal initializer {

}
uint256[50] private __gap

function __ERC20_init(string memory name_, string memory symbol_)

internal initializer {

__Context_init_unchained();

__ERC20_init_unchained(name_,

symbol_);

}
...

Recommendation

By following the Solidity naming convention guidelines, the codebase increased the

readability, maintainability, and makes it easier to work with. Find more information

on the Solidity documentation https://docs.soliditylang.org/en/stable/style-

guide.html#naming-conventions.

L07 - Missing Events Arithmetic

Criticality Minor / Informative

Location
BABYTOKEN.sol#L3074,3108,3113,3119

Status Unresolved

https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions
https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions

 BABYXRP Token Audit 11

Description

Events are a way to record and log information about changes or actions that occur within a

contract. They are often used to notify external parties or clients about events that have

occurred within the contract, such as the transfer of tokens or the completion of a task.

It's important to carefully design and implement the events in a contract, and to ensure that

all required events are included. It's also a good idea to test the contract to ensure that all

events are being properly triggered and logged.

swapTokensAtAmount = amount totalFees =

tokenRewardsFee.add(liquidityFee).add(marketingFee)

liquidityFee = value marketingFee = value

Recommendation

By including all required events in the contract and thoroughly testing the contract's

functionality, the contract ensures that it performs as intended and does not have any

missing events that could cause issues with its arithmetic.

 BABYXRP Token Audit 12

-

L09 Dead Code Elimination

Criticality Minor / Informative

Location
BABYTOKEN.sol#L416,1664,1907,2571

Status Unresolved

Description

In Solidity, dead code is code that is written in the contract, but is never executed or reached

during normal contract execution. Dead code can occur for a variety of reasons, such as:

● Conditional statements that are always false.

● Functions that are never called.

● Unreachable code (e.g., code that follows a return statement).

Dead code can make a contract more difficult to understand and maintain, and can also

increase the size of the contract and the cost of deploying and interacting with it.

function _burn(address account, uint256 amount) internal virtual {

require(account != address(0), "ERC20: burn from the zero
address");

_beforeTokenTransfer(account, address(0), amount);

uint256 accountBalance = _balances[account];
...

}

_totalSupply -=

amount;

emit Transfer(account,

address(0), amount);

_afterTokenTransfer(account,

address(0), amount);

}
...

 BABYXRP Token Audit 15

Recommendation

To avoid creating dead code, it's important to carefully consider the logic and flow of the

contract and to remove any code that is not needed or that is never executed. This can help

improve the clarity and efficiency of the contract.

 BABYXRP Token Audit 14

-

L15 Local Scope Variable Shadowing

Criticality Minor / Informative

Location
BABYTOKEN.sol#L2458,2459,2519,2526,2538,2552

Status Unresolved

Description

Local scope variable shadowing occurs when a local variable with the same name as a

variable in an outer scope is declared within a function or code block. When this happens,

the local variable "shadows" the outer variable, meaning that it takes precedence over the

outer variable within the scope in which it is declared.

string memory _name

string memory _symbol

address _owner

Recommendation

It's important to be aware of shadowing when working with local variables, as it can lead to

confusion and unintended consequences if not used correctly. It's generally a good idea to

choose unique names for local variables to avoid shadowing outer variables and causing

confusion.

 BABYXRP Token Audit 15

-

L16 Validate Variable Setters

Criticality Minor / Informative

Location
BABYTOKEN.sol#L3043,3064

Status Unresolved

Description

The contract performs operations on variables that have been configured on user-supplied

input. These variables are missing of proper check for the case where a value is zero. This

can lead to problems when the contract is executed, as certain actions may not be properly

handled when the value is zero.

uniswapV2Pair = _uniswapV2Pair

payable(serviceFeeReceiver_).transfer(serviceFee_)

Recommendation

By adding the proper check, the contract will not allow the variables to be configured with

zero value. This will ensure that the contract can handle all possible input values and avoid

unexpected behavior or errors. Hence, it can help to prevent the contract from being

exploited or operating unexpectedly.

L17 Usage of Solidity Assembly

Criticality Minor / Informative

Location
BABYTOKEN.sol#L532,707,1148,1166,1184

Status Unresolved

 BABYXRP Token Audit 16

-

Description

Using assembly can be useful for optimizing code, but it can also be error-prone. It's

important to carefully test and debug assembly code to ensure that it is correct and does not

contain any errors.

Some common types of errors that can occur when using assembly in Solidity include

Syntax, Type, Out-of-bounds, Stack, and Revert.

assembly {

size := extcodesize(account)

}
assembly {

let returndata_size := mload(returndata)
...

assembly {

let ptr := mload(0x40)

mstore(ptr,
0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000)

mstore(add(ptr, 0x14), shl(0x60, implementation))

mstore(add(ptr, 0x28),
0x5af43d82803e903d91602b57fd5bf30000000000000000000000000000000000)

instance := create(0, ptr, 0x37)

}
...

Recommendation

It is recommended to use assembly sparingly and only when necessary, as it can be difficult

to read and understand compared to Solidity code.

Functions Analysis

Contract Type Bases

Function Name Visibility Mutability Modifiers

 BABYXRP Token Audit 17

BABYTOKEN Implementation

ERC20,
Ownable,
BaseToken

Public Payable ERC20

External Payable -

setSwapTokensAtAmount External ✓ onlyOwner

excludeFromFees External ✓ onlyOwner

excludeMultipleAccountsFromFees External ✓ onlyOwner

setMarketingWallet External
✓

onlyOwner

setTokenRewardsFee External ✓ onlyOwner

setLiquiditFee External ✓ onlyOwner

setMarketingFee External ✓ onlyOwner

_setAutomatedMarketMakerPair Private
✓

updateGasForProcessing Public ✓ onlyOwner

updateClaimWait External ✓ onlyOwner

getClaimWait External

-

 BABYXRP Token Audit 18

-

updateMinimumTokenBalanceForDivide

nds
External

✓
onlyOwner

getMinimumTokenBalanceForDividends External

-

getTotalDividendsDistributed External

-

isExcludedFromFees Public

-

withdrawableDividendOf Public

-

 BABYXRP Token Audit 19

dividendTokenBalanceOf Public

-

excludeFromDividends External
✓

onlyOwner

isExcludedFromDividends Public

-

getAccountDividendsInfo External

-

getAccountDividendsInfoAtIndex External

-

processDividendTracker External
✓

-

claim External ✓ -

getLastProcessedIndex External

-

getNumberOfDividendTokenHolders External

-

_transfer Internal
✓

swapAndSendToFee Private ✓

swapAndLiquify Private ✓

swapTokensForEth Private ✓

swapTokensForCake Private
✓

addLiquidity Private ✓

swapAndSendDividends Private ✓

 BABYXRP Token Audit 20

Inheritance Graph

 BABYXRP Token Audit 21

Flow Graph

 BABYXRP Token Audit 22

Summary
Babyxrp contract implements a token mechanism. This audit investigates security issues,

business logic concerns and potential improvements. Babyxrp is an interesting project that

has a friendly and growing community. The Smart Contract analysis reported no compiler

error or critical issues. The contract Owner can access some admin functions that can not

be used in a malicious way to disturb the users’ transactions.

Disclaimer
The information provided in this report does not constitute investment, financial or trading

advice and you should not treat any of the document's content as such. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes nor may

copies be delivered to any other person other than the Company without Chainproof’s prior

written consent. This report is not nor should be considered an “endorsement” or

“disapproval” of any particular project or team. This report is not nor should be regarded as

an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts Chainproof to perform a security assessment. This document does not

provide any warranty or guarantee regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the technologies proprietors' business,

business model or legal compliance. This report should not be used in any way to make

decisions around investment or involvement with any particular project. This report

represents an extensive assessment process intending to help our customers increase the

quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk

Chainproof’s position is that each company and individual are responsible for their own due

diligence and continuous security Chainproof’s goal is to help reduce the attack vectors and

the high level of variance associated with utilizing new and consistently changing

technologies and in no way claims any guarantee of security or functionality of the

technology we agree to analyze. The assessment services provided by Chainproof are

subject to dependencies and are under continuing development. You agree that your access

and/or use including but not limited to any services reports and materials will be at your sole

risk on an as-is where-is and as-available basis Cryptographic tokens are emergent

technologies and carry with them high levels of technical risk and uncertainty. The

 BABYXRP Token Audit 24

assessment reports could include false positives false negatives and other unpredictable

results. The services may access and depend upon multiple layers of third parties.

About ChainProof

Chainproof is an Audit & KYC firm for Blockchain Projects, aimed at securing the Blockchain and the

assets at risk. Chainproof is fueled by Industry grade experienced Blockchain Developers from all

around the globe. From finding vulnerabilities, potential scams, malicious code mitigation, improper

implementation of the token which can lead to loss of user’s fund, you name it and we cover and

secure them all.

Security testing and risk mitigation is given the highest priority at ChainProof. The audit process is

analyzing and monitoring many aspects of the project. That way, it gives the community a good sense

of security using an informative report and a generic score.

ChainProof is aiming to make crypto discoverable and efficient globally. We associate with extremely

robust testing and code review, leaving no room for any security risks because, when it comes to user’s

funds, we need to leave no stone unturned. Cheers!

The ChainProof team

ChainProof.dev

https://www.cyberscope.io/

