

 SLT Token Audit 1

Analysis

 ⬤ Critical ⬤ Medium ⬤ Minor / Informative ⬤ Pass

Severity Code Description

Status

⬤ ST Stops Transactions

Passed

⬤ OTUT Transfers User's Tokens Passed

⬤ ELFM Exceeds Fees Limit Passed

⬤ MT Mints Tokens Passed

⬤ BT Burns Tokens Passed

⬤

BC Blacklists Addresses Passed

Diagnostics

 ⬤ Critical ⬤ Medium ⬤ Minor / Informative

Severity Code Description Status

⬤

L09 Dead Code Elimination Unresolved

 SLT Token Audit 2

Table of Contents
Analysis 1

Diagnostics 1

Table of Contents 2

Risk Classification 2

Review 3

Audit Updates 4

Source Files 4

Findings Breakdown 4

L09 - Dead Code Elimination 5

Description 5

Recommendation 7

Functions Analysis 8

Inheritance Graph 9

Flow Graph 10

Summary 11

Disclaimer 12

About ChainProof 14

Risk Classification
The criticality of findings in ChainProof’s smart contract audits is determined by evaluating

multiple variables. The two primary variables are:

1. Likelihood of Exploitation: This considers how easily an attack can be executed,

including the economic feasibility for an attacker.

2. Impact of Exploitation: This assesses the potential consequences of an attack,

particularly in terms of the loss of funds or disruption to the contract's functionality.

Based on these variables, findings are categorized into the following severity levels:

 SLT Token Audit 3

1. Critical: Indicates a vulnerability that is both highly likely to be exploited and can

result in significant fund loss or severe disruption. Immediate action is required to

address these issues.

2. Medium: Refers to vulnerabilities that are either less likely to be exploited or would

have a moderate impact if exploited. These issues should be addressed in due

course to ensure overall contract security.

3. Minor: Involves vulnerabilities that are unlikely to be exploited and would have a

minor impact. These findings should still be considered for resolution to maintain

best practices in security.

4. Informative: Points out potential improvements or informational notes that do not

pose an immediate risk. Addressing these can enhance the overall quality and

robustness of the contract.

Severity

Likelihood / Impact of Exploitation

⬤ Critical

Highly Likely / High Impact

 ⬤ Medium Less Likely / High Impact or Highly Likely/ Lower Impact

 ⬤ Minor / Informative Unlikely / Low to no Impact

Review

Contract Name SLT

Compiler Version v0.5.16+commit.9c3226ce

Optimization 200 runs

Explorer
https://bscscan.com/address/0x28ba6ef35f27f1ed3873cc78869

8d2ddb28d2a82

https://bscscan.com/address/0x28ba6ef35f27f1ed3873cc788698d2ddb28d2a82
https://bscscan.com/address/0x28ba6ef35f27f1ed3873cc788698d2ddb28d2a82

 SLT Token Audit 4

Address 0x28ba6ef35f27f1ed3873cc788698d2ddb28d2a82

Network BSC

Symbol SLT

Decimals 18

Total Supply 100,000,000

Badge Eligibility Yes

Audit Updates

Initial Audit 27 May 2025

Source Files

Filename SHA256

SLT.sol
58154ae30ff3c1af21e50a2281a55c208a90e7e1a045ff63d6ff14e91ce84

6d0

Findings Breakdown

 ⬤ Critical 0

 ⬤ Medium 0

 ⬤ Minor / Informative 1

 SLT Token Audit 5

Severity

Unresolved Acknowledged Resolved Other

⬤ Critical

0 0 0 0

⬤ Medium 0 0 0 0

⬤ Minor / Informative 1 0 0 0

L09 - Dead Code Elimination

Criticality Minor / Informative

Location SLT.sol#L460,476

Status Unresolved

Description

In Solidity, dead code is code that is written in the contract, but is never executed or

reached during normal contract execution. Dead code can occur for a variety of reasons,

such as:

● Conditional statements that are always false.

● Functions that are never called.

● Unreachable code (e.g., code that follows a return statement).

Dead code can make a contract more difficult to understand and maintain, and can also

increase the size of the contract and the cost of deploying and interacting with it.

 SLT Token Audit 6

function _burn(address account, uint256 amount) internal {

require(account != address(0), "BEP20: burn from the zero address");

 _balances[account] = _balances[account].sub(amount, "BEP20: burn

amount exceeds balance");

 _totalSupply = _totalSupply.sub(amount);

emit Transfer(account, address(0), amount);

 } function _burnFrom(address account, uint256 amount)

internal {

 _burn(account, amount);

 _approve(account, _msgSender(),

_allowances[account][_msgSender()].sub(amount, "BEP20: burn amount

exceeds allowance"));

 }

 SLT Token Audit 7

Recommendation

To avoid creating dead code, it's important to carefully consider the logic and flow of the

contract and to remove any code that is not needed or that is never executed. This can help

improve the clarity and efficiency of the contract.

 SLT Token Audit 8

Functions Analysis

Contract Type Bases

Function Name Visibility Mutability Modifiers

SLT Implementation
Context,
IBEP20,
Ownable

Public ✓ -

getOwner External

-

decimals External

-

symbol External

-

name External

-

totalSupply External

-

balanceOf External

-

transfer External ✓ -

allowance External

-

approve External ✓ -

transferFrom External ✓ -

 SLT Token Audit 9

increaseAllowance Public ✓ -

decreaseAllowance Public ✓ -

_transfer Internal ✓

_burn Internal ✓

_approve Internal ✓

_burnFrom Internal ✓

Inheritance Graph

 SLT Token Audit 10

Flow Graph

 SLT Token Audit 11

Summary
SLT contract implements a token mechanism. This audit investigates security issues,

business logic concerns and potential improvements. SLT is an interesting project that has a

friendly and growing community. The Smart Contract analysis reported no compiler error or

critical issues. The contract Owner can access some admin functions that can not be

used in a malicious way to disturb the users’ transactions.

Disclaimer
The information provided in this report does not constitute investment, financial or trading

advice and you should not treat any of the document's content as such. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes nor may

copies be delivered to any other person other than the Company without ChainProof’s prior

written consent. This report is not nor should be considered an “endorsement” or

“disapproval” of any particular project or team. This report is not nor should be regarded as

an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts ChainProof to perform a security assessment. This document does not

provide any warranty or guarantee regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the technologies proprietors' business,

business model or legal compliance. This report should not be used in any way to make

decisions around investment or involvement with any particular project. This report

represents an extensive assessment process intending to help our customers increase the

quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk

ChainProof’s position is that each company and individual are responsible for their own due

diligence and continuous security ChainProof’s goal is to help reduce the attack vectors and

the high level of variance associated with utilizing new and consistently changing

technologies and in no way claims any guarantee of security or functionality of the

technology we agree to analyze. The assessment services provided by ChainProof are

subject to dependencies and are under continuing development. You agree that your access

and/or use including but not limited to any services reports and materials will be at your sole

risk on an as-is where-is and as-available basis Cryptographic tokens are emergent

technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives false negatives and other unpredictable

results. The services may access and depend upon multiple layers of third parties.

About ChainProof

Chainproof is an Audit & KYC firm for Blockchain Projects, aimed at securing the Blockchain and the

assets at risk. Chainproof is fueled by Industry grade experienced Blockchain Developers from all

around the globe. From finding vulnerabilities, potential scams, malicious code mitigation, improper

implementation of the token which can lead to loss of user’s fund, you name it and we cover and

secure them all.

Security testing and risk mitigation is given the highest priority at ChainProof. The audit process is

analyzing and monitoring many aspects of the project. That way, it gives the community a good sense

of security using an informative report and a generic score.

ChainProof is aiming to make crypto discoverable and efficient globally. We associate with extremely

robust testing and code review, leaving no room for any security risks because, when it comes to user’s

funds, we need to leave no stone unturned. Cheers!

The ChainProof team

ChainProof.dev

https://www.cyberscope.io/

